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ABSTRACT A "projection function," P(xz), is defined as
the partial integral of the molecular electron density, p(x,y,z),
over tlp region -o < y < +oo. Thf projection provides a
three-imensional representation of molecular electron distri-
butions. Chemically useful information can be discerned from
graphical displays in either perspctive plot or contour format.
Numerical integration of the unction gives the integrated
spatial electron population for any region of interest. The use
of the projection function and difference functions is exempli-
fied by application to acetaldehyde.

Since the earliest calculations of self-consistent field molecular
wave functions (1), a need has existed to interpret the electron
probability distribution in chemists' familiar terms of atomic
charge, polarization, and ionic and covalent bonding; that is,
the charge of an atom in a molecule is not a physical observable
and, consequently, has no rigorous definition, but the concept
has, nevertheless, even in qualitative terms, had important
conceptual and heuristic value in understanding molecular
chemistry. "Atomic charge" is one of those useful devices that
enable us to dissect a complex compound and to comprehend
it in terms of its simplified components. Especially important
in this regard has been the Mulliken population analysis (2-5),
a well-defined and efficient method of partitioning the linear
combination of atomic orbitals-molecular orbital (LCAO-
MO)-derived electron densities to regions associated with atoms
and bonds.

Unfortunately, the Mulliken scheme has important weak-
nesses; numerous authors (6-23) have pointed out these limi-
tations of Mulliken populations and there is no need to elaborate
on them here. There exist several variants of the Mulliken ap-
proach (8, 10-12, 17-23) differing from it primarily in the
handling of the overlap population. However, all of these
methods have a common weakness in partitioning electrons
according to contributions from the mathematical functions
of the basis set; that is, electrons populating a basis function are
generally associated with the atom on which that function is
centered even if spatially the function has a large amplitude
near another atom.
Two general methods have evolved for dealing with this

problem that are more nearly independent of the choice of basis
set. The first is the use of both contour and perspective diagrams
of orbital density (Eq. 1) or density difference maps (10, 17,
24-36) to explore electron reorganizations that occur during
bonding.
Pk(X,YoZ) = 0kk2(X,Yo,Z)

n n
= E E CiCjXi(X,YoZ)Xj(XYoZ), [11

i=1 j=1
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in which cinjs are coefficients of the n basis functions Xi js in MO
(kk, and yo is an arbitrarily selected value of y. The total electron
density p is given as the appropriate sum over occupied
MOs,

occ
p(x,y.,z) = E NkPk, [2]

in which Nk is the occupation number of MO Ok. These di-
agrams are particularly revealing when the molecule of interest
has a high-order axis of symmetry such as diatomic and linear
polyatomic molecules. In instances in which this is not the case
the main disadvantage of this method is obvious. Because
p(x,y,z) is a four-dimensional function it is necessary to select
a fixed value of one of the coordinates (e.g., y = yo) in order to
reduce the problem to three dimensions. Because this coordinate
often corresponds to the selection of the molecular plane in
which to display the electron density, it is not possible to show
any contribution from orbitals having a node in the molecular
plane; e.g., a and ir MOs cannot be depicted on the same scale.
Thus, unless one examines a spectrum of parallel planes, mis-
leading interpretations could result because entire orbital
representations (in the group theoretical sense) might be
omitted.
The second alternative method of dealing with charge dis-

tribution is direct integration (21, 22, 36-47) of p(x,y,z) over
some region of interest. In some applications this region is a
spherical volume element in spherical coordinate space sur-
rounding an atom (Eq. 3) (38-41, 43-45).

Ne = f0R p(r900,b)R2dR f sin OdO do, [3]

in which Ne is the integrated electron population in a sphere
of radius R. In the "planar density function" of Brown and Shull
(37) the region of interest is a linear element in Cartesian space;
in effect, the electron density is projected onto a line (Eq. 4) (21,
42, 46, 47).

Ne = p(x,y,z)dx dy dz,
XI co- c-o

[4]
in which Ne is the electron population in a volume element
spanning -o < y, z < o and xl<X <x2. Both methods are an
improvement over Mulliken-like basis set populations because
they make use of integrated spatial electron populations, but
they still have limitations of their own. The spherical region,
Eq. 3, is applicable primarily to obtaining charges on atoms but
provides little information about bonding regions. The planar
density function, Eq. 4, has greater utility in that both core and
bonding regions can be examined so long as a molecule can be

Abbreviations: LCAO, linear combination of atomic orbitals; MO,
molecular orbital; e, electron; a.u., atomic unit.
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reasonably represented as having a cylindrical distribution of
charge.
We introduce here an electron projection function (Eq. 5)

that enjoys the features of direct integration as in Eqs. 3 and 4
but includes an additional Cartesian dimension for added
versatility and applicability.

P(x,z) = p(x,y,z)dy. [5]

Properties of the electron projection function
Projecting the four-dimensional function, P(x,y,z), into the
three-dimensional function, P(x,z), has some important ad-
vantages. It corresponds to summing the aforementioned
electron density function of a plane (Eq. 1) over all parallel
planes. Hence, there is no arbitrariness about the choice of one
of these planes in which to display the distribution. a and ir
MOs can be represented in the same coordinate frame. Because
the projection function (Eq. 5) has units of electrons per unit
area, the magnitude of P(x,z) is a direct measure of the number
of electrons in a region, not just their density. Numerical inte-
gration of P(x,z) (Eq. 5) over x reduces to the linear projection
(2i, 37, 42, 46, 47) of Eq. 4.

Application of the projection function parallels that of density
diagrams and density difference diagrams with one important
distinction; namely, charge is conserved whereas density is not;
that is, the total volume of P(x,z) is a constant equal to the
number of electrons in the system, unlike p(x,y,z), in which
density can "leak" into parallel planes. The consequence of this
distinction is that difference maps of the projection function
have zero net volume; charge can be gained in one region only
at the expense of another region. Thus, difference maps rep-
resent a direct measure of the amount of charge redistribution
rather than the amount of density redistribution.
Some of these features are exemplified below with applica-

tions to acetaldehyde.

Technical considerations: Efficiency and accuracy of
numerical integration
In general, the analytical integration in Eq. 5 can be accom-
plished readily for Gaussian basis sets by application of Huz-
inaga's formula (48). We found it advantageous to utilize the
separability of coordinates of Gaussian functions to rewrite Eq.
5 as Eq. 6.

n n
P(x,z) = E Fij(x) * Fij(Z)

i=1 j=1

Fij(y)dy E Nk * Cki * Cki, [6]
co k=1

in which F j(x) is the x component of Huzinaga's formula for
the ith and jth Gaussian primitives, and Cki is the ith coefficient
in the kth LCAO-MO having occupation number Nk. This
treatment has several useful consequences. First, because the
integral in y is independent of x and z it need be evaluated only
once for each pair of basis functions ij. Second, it permits a
refinement procedure that renders subsequent numerical in-
tegrations quantitative. We superimpose the molecule on a grid
in a convenient plane. Because our concern is to measure dis-
tribution of charge, we wished to have each of our grid points
represent the average value of the projection function P(x,z)
in the neighborhood x : Ax/2, z i A\z/2 rather than the value
of the function at the arbitrarily selected grid points. By uti-
lizing the separability of Eq. 6 it is possible to compute the av-
erages of Fij(x) and Fij(z) in their respective neighborhoods

x i Ax/2 and z + z/2. This allows one to rewrite Eq. 6 as
Eq. 7.

n n

P(x,z) = E Fij(X)
i=1 j=1

Fij(z) * Fij(y)dy E NkCk2Ckj. [71
k=1

The averages of Fij(x) and Fij(z) were computed by dividing
the respective grid intervals into a large number of subintervals
(40-100), computing Fij[x + (b-lAx/m)] (in which m is the
number of subintervals and b ranges from -m/2 to +m/2) and
storing the average Fij(x).

Valence orbitals have slowly varying derivatives and little
refinement is needed to achieve quantitative (error less than
10-4 electrons per orbital) numerical integration. However,
even core regions of second-row (Na-Ar) atoms can be inte-
grated to within 0.01 electron if the number of subintervals m
= 100. Given these considerations, it was possible to examine
a grid of sufficient size so as to encompass all of the electron
distribution for molecules of chemical interest while retaining
the precision necessary for valid interpretation. We found that
a grid spacing of 0.2 atomic unit (a.u.; I a.u. = 0.529 A) and
extension of the grid 3.0 a.u. beyond the nearest atom gives
satisfactory results in all cases. Further details of the compu-
tational strategy are being published separately (49).

Example: Acetaldehyde
The projection function for acetaldehyde in the C-C-O plane
is shown in Fig. 1 in perspective plot form as calculated with
the 4-31G basis set (50) for the "standard" geometry (51). The
function shows a distinct minimum between carbon and oxygen
that could be used as a defined boundary for evaluating the
electronic charge "on oxygen." This boundary differs from that
given by covalent bond radii and would lead to an effectively
varying size for the oxygen in different carbonyl compounds.
This problem emphasizes the limitations of any method that
attempts to define the atomic population or charge on an atom
in a molecule-a physically nonobservable quantity. However,
far less ambiguity is associated with the use of any consistent
definition in determining the change in the oxygen charge in
a structural change such as between formaldehyde and acet-
aldehyde. Fig. 2 shows the projection function difference plot

- 2.700

FIG. 1. Electron projection plot in perspective format for acet-
aldehyde. The carbonyl oxygen is at the far right, and the methyl
group is in the back left. e, Electrons; a.u., atomic units.

Proc. Natl. Acad. Sci. USA 76 (1979)

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
20

, 2
02

1 



www.manaraa.com

Proc. Natl. Acad. Sci. USA 76 (1979) 2501

FIG. 2. Difference projection function plot for acetaldehyde FIG. 3. Difference projection function plot for acetaldehyde
minus formaldehyde. - - - contours (units are e a.u.-2) are negative; enolate ion minus acetaldehyde. - - - contours (units are e a.u.-2) are
- - - line shows limits for numerical integration about oxygen. negative; - - - line shows limits for numerical integration about
Contour levels are from -0.012 to 0.012 at intervals of 0.002. oxygen. Contour levels are from -0.012 to 0.012 at intervals of

0.002.

in contour form for P(acetaldehyde) - P(formaldehyde) using
the same basis set and same aldehyde geometry. Only the
contours in the carbonyl region are important because of the
difference in numbers of atoms and electrons in the methyl
region. The positive difference contours around oxygen show
clearly that the oxygen of acetaldehyde has more electrons than
that of formaldehyde. Moreover, the contours between oxygen
and carbon in the carbonyl group are now rather shallow and
the difference population is not as sensitive to the precise def-
inition of the atomic boundaries. Integration gives a difference
of 0.044 e for oxygen. The negative contours at carbon show that
the carbonyl carbon of acetaldehyde is more positive than that
of formaldehyde. Integration with reasonable boundaries gives
a difference population of about -0.009 e. These values for
oxygen and carbon may be compared to the 4-31G Mulliken
population differences of 0.037 e and -0.146 e, respectively.
The shallow contour at the aldehyde hydrogen shows that this
hydrogen is essentially similar in acetaldehyde and formalde-
hyde, with the acetaldehyde hydrogen being slightly more

negative. The corresponding Mulliken population difference
is -0.011 e; that is, with the formaldehyde hydrogen more

negative.
Another interesting comparison is that between acetaldehyde

and its enolate anion. Fig. 3 shows the difference projection plot
P(enolate) - P(acetaldehyde) for a planar enolate structure
having the same CCHO skeleton as acetaldehyde. The true
structure would be a perturbation of this, but use of the same
skeleton facilitates interpretation of the difference function.
We note that, as expected, the enolate oxygen is more negative
than that of acetaldehyde. Integration gives a difference of 0.24
e; moreover, the shallow nature of the difference contours be-
tween oxygen and carbon shows that this number is not sensitive
to the precise definition of the boundaries of the oxygen atom.
Again, a direct comparison of population differences between
comparison systems is less sensitive to the precise definition of
an atom in a molecule than is the absolute value in any one

compound. The shallow contours at the carbonyl carbon show
that this carbon and its attached hydrogen are much the same
in enolate and aldehyde. The positive contours between the

carbons are consistent with the increased double bond character
of the C-C bond in the enolate ion.
The foregoing examples suffice to demonstrate the value of

the projection function. Other applications to showing the ef-
fects of basis set variations, to carbonium ions and hypercon-
jugation, and to carbanions and anionic hyperconjugation will
be presented elsewhere.
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